430 research outputs found

    The Case for Quantum Key Distribution

    Get PDF
    Quantum key distribution (QKD) promises secure key agreement by using quantum mechanical systems. We argue that QKD will be an important part of future cryptographic infrastructures. It can provide long-term confidentiality for encrypted information without reliance on computational assumptions. Although QKD still requires authentication to prevent man-in-the-middle attacks, it can make use of either information-theoretically secure symmetric key authentication or computationally secure public key authentication: even when using public key authentication, we argue that QKD still offers stronger security than classical key agreement.Comment: 12 pages, 1 figure; to appear in proceedings of QuantumComm 2009 Workshop on Quantum and Classical Information Security; version 2 minor content revision

    Topological Orbifold Models and Quantum Cohomology Rings

    Full text link
    We discuss the toplogical sigma model on an orbifold target space. We describe the moduli space of classical minima for computing correlation functions involving twisted operators, and show, through a detailed computation of an orbifold of CP1{\bf CP}^1 by the dihedral group D4,D_{4}, how to compute the complete ring of observables. Through this procedure, we compute all the rings from dihedral CP1{\bf CP}^1 orbifolds; we note a similarity with rings derived from perturbed DD-series superpotentials of the ADEA-D-E classification of N=2N = 2 minimal models. We then consider CP2/D4,{\bf CP}^2/D_4, and show how the techniques of topological-anti-topological fusion might be used to compute twist field correlation functions for nonabelian orbifolds.Comment: 48 pages, harvmac, HUTP-92/A06

    Inflation on an Open Racetrack

    Full text link
    We present a variant of warped D-brane inflation by incorporating multiple sets of holomorphically-embedded D7-branes involved in moduli stabilization with extent into a warped throat. The resultant D3-brane motion depends on the D7-brane configuration and the relative position of the D3-brane in these backgrounds. The non-perturbative moduli stabilization superpotential takes the racetrack form, but the additional D3-brane open string moduli dependence provides more flexibilities in model building. For concreteness, we consider D3-brane motion in the warped deformed conifold with the presence of multiple D7-branes, and derive the scalar potential valid for the entire throat. By explicit tuning of the microphysical parameters, we obtain inflationary trajectories near an inflection point for various D7-brane configurations. Moreover, the open racetrack potential admits approximate Minkowski vacua before uplifting. We demonstrate with a concrete D-brane inflation model where the Hubble scale during inflation can exceed the gravitino mass. Finally, the multiple sets of D7-branes present in this open racetrack setup also provides a mechanism to stabilize the D3-brane to metastable vacua in the intermediate region of the warped throat.Comment: 29 pages, 15 figures, pre-print number and references adde

    Jamming at Zero Temperature and Zero Applied Stress: the Epitome of Disorder

    Full text link
    We have studied how 2- and 3- dimensional systems made up of particles interacting with finite range, repulsive potentials jam (i.e., develop a yield stress in a disordered state) at zero temperature and applied stress. For each configuration, there is a unique jamming threshold, ϕc\phi_c, at which particles can no longer avoid each other and the bulk and shear moduli simultaneously become non-zero. The distribution of ϕc\phi_c values becomes narrower as the system size increases, so that essentially all configurations jam at the same ϕ\phi in the thermodynamic limit. This packing fraction corresponds to the previously measured value for random close-packing. In fact, our results provide a well-defined meaning for "random close-packing" in terms of the fraction of all phase space with inherent structures that jam. The jamming threshold, Point J, occurring at zero temperature and applied stress and at the random close-packing density, has properties reminiscent of an ordinary critical point. As Point J is approached from higher packing fractions, power-law scaling is found for many quantities. Moreover, near Point J, certain quantities no longer self-average, suggesting the existence of a length scale that diverges at J. However, Point J also differs from an ordinary critical point: the scaling exponents do not depend on dimension but do depend on the interparticle potential. Finally, as Point J is approached from high packing fractions, the density of vibrational states develops a large excess of low-frequency modes. All of these results suggest that Point J may control behavior in its vicinity-perhaps even at the glass transition.Comment: 21 pages, 20 figure

    Topological String Amplitudes, Complete Intersection Calabi-Yau Spaces and Threshold Corrections

    Full text link
    We present the most complete list of mirror pairs of Calabi-Yau complete intersections in toric ambient varieties and develop the methods to solve the topological string and to calculate higher genus amplitudes on these compact Calabi-Yau spaces. These symplectic invariants are used to remove redundancies in examples. The construction of the B-model propagators leads to compatibility conditions, which constrain multi-parameter mirror maps. For K3 fibered Calabi-Yau spaces without reducible fibers we find closed formulas for all genus contributions in the fiber direction from the geometry of the fibration. If the heterotic dual to this geometry is known, the higher genus invariants can be identified with the degeneracies of BPS states contributing to gravitational threshold corrections and all genus checks on string duality in the perturbative regime are accomplished. We find, however, that the BPS degeneracies do not uniquely fix the non-perturbative completion of the heterotic string. For these geometries we can write the topological partition function in terms of the Donaldson-Thomas invariants and we perform a non-trivial check of S-duality in topological strings. We further investigate transitions via collapsing D5 del Pezzo surfaces and the occurrence of free Z2 quotients that lead to a new class of heterotic duals.Comment: 117 pages, 1 Postscript figur

    Interactions between arbuscular mycorrhizal fungi and intraspecific competition affect size and size inequality of Plantago lanceolata L.

    Get PDF
    Intraspecific competition causes decreases in plant size and increases in size inequality. Arbuscular mycorrhizas usually increase the size and inequality of non-competing plants, but mycorrhizal effects often disappear when plants begin competing. We hypothesized that mycorrhizal effects on size inequality would be determined by the experimental conditions, and conducted simultaneous field and glasshouse experiments to investigate how AM fungi and intraspecific competition determine size inequality in Plantago lanceolata. 2 As predicted, plant size was reduced when plants were competing, in both field and controlled conditions. However, size inequality was unexpectedly reduced by competition. Plants may have competed in a symmetric fashion, probably for nutrients, rather than the more common situation, in which plant competition is strongly asymmetric. 3 Mycorrhizas had no effect on plant size or size inequality in competing plants in either field or controlled conditions, possibly because competition for nutrients was intense and negated any benefit the fungi could provide. 4 The effects of mycorrhizas on non-competing plants were also unexpected. In field-grown plants, AM fungi increased plant size, but decreased size inequality: mycorrhizal plants were more even in size, with few very small individuals. In glasshouse conditions, mycorrhizal colonization was extremely high, and was generally antagonistic, causing a reduction in plant size. Here, however, mycorrhizas caused an increase in size inequality, supporting our original hypothesis. This was because most plants were heavily colonized and small, but a few had low levels of colonization and grew relatively large. 5 This study has important implications for understanding the forces that structure plant communities. AM fungi can have a variety of effects on size inequality and thus potentially important influences on long-term plant population dynamics, by affecting the genetic contribution of individuals to the next generation. However, these effects differ, depending on whether plants are competing or not, the degree of mycorrhizal colonization and the responsiveness of the plant to different colonization densities

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    A class-wide phylogenetic assessment of Dothideomycetes

    Get PDF
    We present a comprehensive phylogeny derived from 5 genes, nucSSU, nucLSU rDNA, TEF1, RPB1 and RPB2, for 356 isolates and 41 families (six newly described in this volume) in Dothideomycetes. All currently accepted orders in the class are represented for the first time in addition to numerous previously unplaced lineages. Subclass Pleosporomycetidae is expanded to include the aquatic order Jahnulales. An ancestral reconstruction of basic nutritional modes supports numerous transitions from saprobic life histories to plant associated and lichenised modes and a transition from terrestrial to aquatic habitats are confirmed. Finally, a genomic comparison of 6 dothideomycete genomes with other fungi finds a high level of unique protein associated with the class, supporting its delineation as a separate taxon
    corecore